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Summary New similarity criteria are obtained for the velocity profile and the
Reynolds stress terms by a stream function approach using the transformed x-momentum
balance equation and the transformed Reynolds stress transport equation. The similarity
criteria are similar to earlier results but are developed without a priori assumptions as to
the velocity or Reynolds stress term scaling variables. Using the criteria, eleven
experimental turbulent boundary layer datasets displaying similarity-like behavior in the
outer region of the boundary layer are found. Scaling results indicate that the
displacement thickness, the momentum thickness, the ninety-nine percent thickness, and
the Rotta-Clauser thickness all work as the outer region similarity thickness scale. The
experimental and theoretical evidence indicates the free stream velocity works well as the
velocity scaling parameter. For the Reynolds stress scaling, experimental evidence is for
the most part ambiguous. However, recent DNS results clearly indicate that the friction
velocity squared is the proper scaling but this result is seemingly at odds with the new
theoretical criteria. Resolution of the conflict is made by the observation that similarity-
like behavior of the velocity profile and the Reynolds stress terms are only obtained for
the flow datasets where the ratio of the free stream velocity to the friction velocity is
almost constant.



1. Introduction

The question of similarity of the turbulent boundary layer has been around almost as
long as the studies of modern fluid flow itself. Similarity solutions of the flow governing
equations are well known for laminar flow. Turbulent flow similarity is more
problematic. Since the equations for very few turbulent flows admit to exact similarity
solutions, the community has long sought to establish their possible existence by looking
for “scaling laws”, which basically consist of trying to guess the scaling variables and
then plotting experimental velocity profiles using the guessed scaling. Rather than
searching blindly, it is desirable to have some theoretical guidance that would help design
and/or search for the conditions leading to the experimental discovery of the similarity
scaling laws for the turbulent boundary layer. This guidance would be of the form of
determining what theory can tell us about the functional behavior of the length, velocity,
and Reynolds stress scaling variables along the length of the wedge.

The search for similarity scaling behavior for the turbulent boundary layer began with
the experimental and theoretical work of Clauser [1]. Using the friction velocity u_ as

the velocity scaling variable for the turbulent boundary layer, Clauser predicted that
equilibrium (similar) boundary layers are only obtained for the nonzero pressure gradient

case when
B o= - o dp, (1)
‘ pu’ dx

is a constant. In this equation ¢, is the displacement thickness, pis the density, p,is the

pressure at the boundary layer edge, and x-direction is along the flow direction. Based on
Eq. 1 criteria, Clauser was able to generate similarity-like behavior for certain turbulent
flows but found, in general, that the experimental equilibrium similarity condition is
relatively rare and difficult to generate.

Rotta [2] and Townsend [3] subsequently developed some additional theoretical
conditions for turbulent boundary layer similarity. Like Clauser, Rotta made specific

assumptions about the velocity scaling (=u,) and the Reynolds stress scaling (= uf ).

More recently, Castillo and George [4], using a momentum balance approach, found that
the free stream velocity u, must be the velocity scaling variable for flows with a pressure

gradient. Furthermore, they found that similarity exists only when the parameter
_ _ddu,/dx )
u, ds/dx
is a constant. In this equation ¢ is the thickness scaling variable. This provides a very
specific test for discovering similarity in a set of experimental profiles, i.e. along the

length of the plate we must haved o ue_” Awith A= constant. Taking &equal to the

ninety-nine percent thickness &y, Castillo and George showed that rather than being

rare, most nonzero pressure gradient turbulent boundary layer flows with constant
upstream conditions were in equilibrium by this measure. In fact, they showed that only
three values of this pressure parameter were needed to characterize all equilibrium
turbulent boundary layers. One was for the adverse pressure gradient (APG) flow with
A =0.22, one for the favorable pressure gradient (FPG) flow with A =-1.92, and one
for the zero pressure gradient (ZPG) flow with A =0. In a later publication, Cal,



Johansson, and Castillo [5] backed off from this strong stance indicating other values for
A are possible. Indeed, Maciel, Rossignol, and Lemay [6] presented a modified Castillo
and George formulation and, after looking at a range of experimental datasets, concluded
that universal similar profiles for the ZPG, APG, and FPG boundary layers do not exist.
While they concede the existence of similarity-like behavior in certain sets of
experimental profiles, they contend that most turbulent boundary layers found in the real
world are almost never in a state of equilibrium.

One possible explanation for this conundrum as to whether similarity-like behavior is
rare or common in the turbulent boundary layer is that the Eq. 2 criterion is not complete.
It may be there are some additional criteria not yet considered that further limit the
allowable behavior of the length and velocity scaling along the plate. This prompted us
to take another look at similarity criteria of the turbulent boundary layer flow on a wedge.
We are particularly interested in pointing out the scaling criteria that are based only on
theoretical considerations rather than some specific assumptions of the flow behavior.
Using a stream function approach, the x-momentum balance equation and the Reynolds
stress transport equation are transformed and a set of parameters like Eqs. 1 and 2 are
developed. These new parameters must be constant for similarity and result in a set of
requirements as to the functional behavior of the boundary layer thickness scaling
variable, the velocity scaling variable, and the Reynolds stress term scaling variable along
the length of the wedge.

There are two major differences between our approach and what has appeared in the
past. The first difference is that we include the Reynolds stress transport equation with
the normally used x-momentum balance equation. We note that Townsend [3] used the
x-momentum balance equation together with the kinetic energy balance equation but
Townsend’s subsequent conclusions are derivable from the x-momentum balance
equation alone. The transport equation for the Reynolds stress we use herein is an exact
equation derived from the momentum equation by multiplying by the fluctuating velocity
component and the result Reynolds-averaged (see, for example, White [7]). The
inclusion of the Reynolds stress transport equation with the normally used x-momentum
balance equation allowed us to determine that the length scale must be linearly
proportional to the distance along the wedge and that velocity scale must be a power
function of the distance along the wedge. These results have already been obtained in the
past but in every previous effort it was necessary to make certain assumptions about the
x-behavior of the velocity scaling variable or the Reynolds stress terms. Our new
derivation avoids making any a priori assumptions as to the velocity or Reynolds stress
terms scaling variables.

The second major difference between this effort and earlier work is that scaling
guidance results are obtained for all pressure gradient variations including the zero-
pressure gradient case. This is in contrast to the criteria given by Eqgs. 1 and 2, for
example, which must be zero for the ZPG case. These two criteria therefore provide no
guidance as to the behavior of the similarity thickness parameter & for the ZPG case.

The new criteria are used to discover eleven APG, FPG, and ZPG experimental
datasets having similarity in the outer region of the turbulent boundary layer. Four
different length scales and three different velocity scales were examined for the velocity
profile scaling including the traditional Rotta-Clauser scaling. The scaling results are
different than those obtained in previous studies. The Reynolds stress terms appear to



scale with inner layer scaling variables. We point out that an important property of each
of the datasets for which we found similarity-like behavior is that the ratio of the free
stream velocity to friction velocity is almost constant as required by Rotta [2]. This turns
out to be critical in explaining the experimental results in light of the new theoretical
guidance.

2. Exact Equations

To develop the theoretical guidance for discovering scaling laws, we start with the x-
momentum balance equation. For a 2-D incompressible turbulent boundary layer that is
steady state on the mean, the Reynolds-averaged stream-direction component (x-
direction) of the momentum balance along a wedge is given by

2
5{%} L LA (3)
p Ox Iy

where the bar above a variable is the Reynolds average operator and the tilde operator
designates the instantaneous velocity. Next, we introduce the Reynolds stress transport
equation given by

O | OW _=ou_ PW 0 { ﬁﬁ] dii 0% ﬁ(ﬁﬁ 5\7J

Ox Jy Jy ay> Oy Jy Ox
Solutions to these equations are presently not possible for turbulent flows since the
functional form of many of terms are not known. Nevertheless, it is still possible to learn
some important information about the boundary layer behavior by proceeding with a
similarity scaling analysis.

ou ou O {E}

é’yé’x ; = 0 . 4)

3. Scaling Variable Transformation
To investigate similarity scaling we start by transforming the momentum equations

using candidate similar scaling variables for the length and velocity given by 6 and u_,

respectively, which are functions of x but not y. We begin by introducing the
independent variables

y
§ = X , 77 = —
Furthermore, we define a stream function, w(x,y), in terms of a dimensionless
function f (&,77) as

w(x,y) _ f(f,ﬂ)

ou,
The stream function satisfies the conditions
L - vy L AC))
oy ox
This means that
d {5 u } a’ af
u = U ! 5 v = - — 5 s
S P f+ I —nf' Y

where the prime indicates differentiation with respect to 7.



The above variable switch can be used to transform the two equations. The x-
momentum balance equation, Eq. 3, reduces to

du. ., du u> do s, Of 5, Of
_S ! _ _S /I__S_ II+ ! _ /I_+ 5
U a,xf U a,xﬁ , I +us f o¢ ug f o¢ S)
uu(x)do ,  duu(x) uv(x) , 1 oP Uy
- — + + = ———tv—= ,
S dr 8 e 811 5 812 D Ox 52 f

where we have assumed that the Reynolds stress terms can be separated into the product
of an x-dependent functional and a 77 -dependent functional as

uv

77
1) ) . (6)
w(x) 812 (5 77) i (x) 811(5 77)
The Reynolds stress transport equation, Eq. (4), reduces to
dus 1 us d5 [ 6uv X ' af '
_uV(x)Efglz _”V(x)gafgn"‘”s 6)(6 )f 812 _”V(x)”s %812 + (7
u,uv(x) . uv(x) , .
ZTgl2 f+v 5 81> +{3 additional terms} = 0 ,

where the three additional terms are not written out expressly because they cannot be

written in terms of @v. This is not to say that these terms can be neglected. In fact the
opposite is true; the three additional terms in Eq. 7 include the numerically significant
energy dissipation rate and the velocity-pressure gradient terms. However, for the

purposes of obtaining similarity scaling information for ', u,, and the Reynolds stress
terms, these three additional terms do not contribute anything useful.

4. Similarity Scaling

Eqgs. 5 and 7 are exact equations. The first step to obtain similar scaling factors is to
assume that the f and g’s are only a function of 7. This means that all of the of /o0&,
Of'/0& , etc. terms in the transformed equations are assumed equal to zero. The next step

is to insure that all of the x-dependent variable groupings appearing in Eq. 5 have the
same functional dependence. This must also be true for Eq. 7. Equivalently, we can
divide the equations through by one of the variable groupings and check for constancy of
the resulting parameters. For the x-momentum equation we will divide through by

(us /16 ) d{5 u } / dx and for the Reynolds stress transport equation we will divide through

by uv(x)us /5 . The transformed x-component of the momentum balance, Eq. 5,

becomes
A 2 " ' ' o opP 1 "
—f-ff"-7 + 7,8+ 7T = - —+—
ﬂ,+1f I 1771811 T 72811 T 73812 ou, a’{5us}/a'x o (8)
and the transformed Reynolds stress transport balance, Eq. 7, becomes
—Kf8—ENS'8+7Ty ['8r+28, f"+ 185+ {3 additional terms} =0 , )

where



O du,  Su d5 . _ 8 dujdx

a = + , = , (10)
v dx v dx u, do/dx
1% dé 0 du,
y = — , & = — , and kK = — ,
ou, dx u, dx
and where the 7, are given by
uu(x) duu(x)/dx
gl YIS T = 2/ (11)
u; (A+1) U dus/der(us/é')dé'/dx
d
= uv(x) i Cand 7, = 5 duv(x)
Ou, du, /dx +u’ dS/dx wv(x) dx

Eq. 8, without the stress terms, is the Falkner and Skan [8] equation. The A
parameter is the negative of the Castillo and George [4] equilibrium similarity
parameter A (Eq. 2) if one takes u, as the similarity velocity scale. The a parameter is
the same as the Falkner and Skan ¢ parameter from Schlichting [9].

Thus far we have left the pressure terms unassigned. The pressure for the case of a
nonzero wedge angle includes an invisid flow contribution. Therefore we can define the

total pressure as
P(x)=p(xn)+p.(x) (12)
where p, (x)is the pressure at the boundary layer edge and p(x,77)=0 for ;7 above the

boundary layer edge. It is universally assumed that p, (x) is given by the Euler equation

so that
Lo de (13)

e

pox < dx
If we substitute Eq. 12 into Eq. 5 and use Eq. 13, we obtain one more similarity criterion
in addition to those in Eqgs. 10 and 11. Thus, for a nonzero wedge angle we also must
have the ratio

du, (14)
e 1y _udu,jdx A
du, +uS2 dé g dug/dx A+1
u R
Ydx 6 dx

equal to a nonzero constant for similarity. The general solution to Eq. 14 equal to a

nonzero constant is given by u, =+ja+b ”3 where a and b are constants. With only a

slight loss of generality (taking a=0), we see that for similarity, this reduces to u_ oc i, in
accordance with the result of Castillo and George [4].

5. Similarity Scenarios

Next, we consider two possibilities for similarity. We concentrate on similarity
scenarios applicable to the outer region of the turbulent boundary layer. The first is
similarity of the outer region in which the viscosity terms can be neglected. Secondly,
there is the ZPG case that is best handled separately.



5.1 Similarity of the Outer Region with a Pressure Gradient

First we consider the case of turbulent flow with a nonzero pressure gradient such that
u, ocu,. In the outer region of a turbulent boundary layer on a wedge we will assume
that the viscous forces are negligible. This means that the viscous terms in Eqgs. 8 and 9
are equal to zero (eliminatinga and y ). Therefore, the functional form that u, and &
may take is now governed by A, ¢, and xfrom Eq. 10. It can be shown mathematically
that having these three parameters be constant restricts the functional forms that 6 may
take to a linear function of the type 6 =a,(x—x,) and u, oc u, to a power law function

of the type u, = a,(x—x,)", such that a,,a,,m, and x, are constants. For the Reynolds

stress terms we must have uu(x) oc (x — x, Y™ and uv(x) o (x — xo)zm .

A second possibility is to have 6 = constant and u_ oc u, be an exponential function

xlc

of the type u, =be”’“, such that b and ¢ are constants. We include this possibility

because, as we will see below, there is one experimental realization of this condition in
the data of Herring and Norbury [10].

5.2 Similarity of the Outer Region of a Flat Plate
For similarity for this case we will examine two possible scenarios; one in which
u,=constant and one in which u, #constant with respect to x. Consider first the case

where u =constant. If the velocity u is constant, then the scaled momentum equations
simplify somewhat. Only &, y, €, and the four ¢ parameters are nonzero for the flat
plate case. For similarity in just the outer region (neglecting Crand y ) with u#_=constant,

the & term from the y-momentum equation provides guidance as to the functional form
that 6 may take. The general solution for similarity is that & must be a linear function
of x. For the Reynolds stress terms we must have uu(x) =constant and uv(x) =constant.

For the outer region of the turbulent boundary layer on a flat plate with u_ #constant,

the functional form for &, u , and the Reynolds stress terms will be governed by the

s°
conditions outlined in Section 5.1 above. However, for this case it is not necessary that
u, Cu,.

6. Experimental

The above theoretical results are new in the sense that the similarity requirement
for linear behavior of the length scaling parameter is obtained without first making an
assumption about the velocity scaling parameter. This will be discussed more thoroughly
in the Discussion section below. We point this out because, while the theoretical results
are new, others have already obtained experimental similarity scaling results in the outer
region of the turbulent boundary layer in which the length scale is a linear function of the
distance along the wedge. Maciel, Rossignol, and Lemay [6] point out a number of
examples from the literature.
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the eleven datasets considered herein. the ZPG results for Wieghardt and
Tillmann [14], Smith [15], and

Osterlund [16], the FPG results of Ludwieg and Tillmann [17] and Herring and Norbury
[10], and the APG results for Bradshaw and Ferriss [18] and Samuel and Joubert [19] for
which only velocity profile data is available. The datasets used herein are summarized in
Table 1 (located after the Reference’s). The dashed lines in Fig. 1 represent the 5% high/
low lines. As is plainly demonstrated, u,/u, is almost constant. Notice that in most

Fig. 1: The ratio u, /u, normalized by the

cases, the ratio values are monotonically increasing with Reynolds number. Thus, it is
necessary to emphasize the “almost” constant aspect. The importance of having the ratio

u, [u, almost constant will become evident below.
Using the criteria from Section 5 along with looking for u,/u, = constant, we

searched for and found eleven experimental datasets which show similarity-like behavior.
For these datasets we found the length parameters J,, the Rotta-Clauser thickness A, the

momentum thickness o,, and Jy, are all linear functions of the type a,(x—x,), @,and
x, constants, with the exception of Herring and Norbury [10] for which J,, A, J,, and
049 are constant (see Appendix A). This means that these four thickness variables

satisfy the ¢ equal a constant requirement and are therefore possible candidates for the
similarity thickness o .

To determine which of these possibilities worked best, we turned to the experimental
data. For the length scaling, we found only small differences between plots using d,, A,

0,, 0r Oy as the length scale combined with various velocity candidate scaling (see



Appendix B). All worked fairly well. Given the probable error bars, we do not believe
the differences are significant. Therefore, based on the experimental results for the
velocity profile plots, we conclude that the outer region similarity thickness scale could

beod,, A, 0,,0r dq4. Since the displacement thickness o, has the smallest error bar and
is a well-defined integral parameter, we will initially adopt ¢, as the similarity thickness
scale & .

The investigated possibilities for uscaling include u,, u_, and the empirical velocity
proposed by Zagarola and Smits [21] given by u,; =u,5, /6 (see Appendex B). For the
APG and FPG cases, Eq. 14 indicates that we must have u, oc u, for the outer region of a
turbulent boundary layer. However, since the ratio u_/u,is almost constant for the
eleven datasets, then u,is still a possibility. After plotting and comparing, we found a
clear advantage for u, over u and u,, for producing similarity-like collapse of the

velocity profile for the eleven datasets. For illustrative purposes, we plot the APG data of
Skare and Krogstad [12] in Figs. 2a, 2b, and 2c¢ and the ZPG data of Wieghardt and
Tillmann [14] in Figs. 3a, 3b, and 3c using the three velocity scalings. These plots as

well as others (see Appendex B) have convinced the author that that u, is superior to u_
and u,g (with 6=A, J,, 0or dy ) as the outer region velocity profile scaling variable for

all cases including the ZPG cases.
Experimentally it is evident that «, is the outer region similarity variable «, but does it

satisfy the theoretical guidance? Using the same x, value from the thickness fit, we

found the fit u, = a, (x - X )m works well for six of the seven non-ZPG cases. For the

ZPG cases, u,=constant. Simple mathematics can be used to show that for ten of the

datasets, the above similarity criteria requiring A4 ,& , and xto be a constant are satisfied
for u, oc u,and any choice of the linear thickness parameters o,, A, J,, or o4, . Herring

and Norbury [10] is the one exception where we found that u, fits to an exponential for
this case and thato, is a constant. Thus this dataset also satisfies the above similarity

criteria (see Section 5.2). Therefore, all eleven datasets satisfy the similarity criteria
thereby confirming that the velocity scale u, is an acceptable velocity scale that can
result in similarity-like behavior of the velocity profile of the outer region of the turbulent

boundary layer.
To illustrate the similarity-like behavior we have plotted multiple datasets of the

velocity profiles in Figs. 4 — 6 using the 6,and u, as the scaling variables. In Fig. 4 we
plot three ZPG sets and the mild APG set. In Fig. 5 we plot the mild APG and FPG cases

as well as one ZPG set for reference. Finally, in Fig. 6 we plot the moderate and strong
APG cases as well as one ZPG case for reference. It is evident that the similarity-like

collapse of the data using u,as the similarity velocity scale u_ and o, as the similarity
thickness scale o6 is very good. The figures also indicate that the profile shape is

changing with the strength of the pressure gradient contrary to Castillo and George’s
conjecture.
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Next we looked at the Reynolds stress term av. As in the velocity profile case, we
found the length parameters 6, , A, J,, and o, all worked fairly well as the thickness

scaling parameter (see Appendic C). The one exception was the DNS results of Khujadze
and Oberlack [13] for which the parameters o, and 6, had a small but noticeable
advantage over A and Jy,. Since the displacement thickness o, also worked well for
the velocity profile plots, has the smallest error bar, and is a well-defined integral
parameter, in what follows we will adopt o, as the similarity thickness scale o .

For the outer region similarity uv(x) scaling, we looked at various possibilities
including uv(x) = uf, uv(x) = uf , and uv(x) = ug , U, a constant, as well as the mixed

cases such as uv(x)=u,u,, etc. (see Appendix C). Using the Skédre and Krogstad [12]

data, we found the fits u, =a,(x-x,)"and u, =a,(x—x,)" work well using the
same x,, value from the thickness fit. (The Elsberry, et. al. [11] u, data was too scattered
to make a proper fit). We have already established that u, = u, from the velocity profile
considerations. Thus, the similarity requirements that 7z, and 7, from Eq. 11 be constant
with respect to x are satisfied if one takes any choice of the linear thickness parameters
0y, A, 0,, and J4yin combination with either ue2 or, if m=n, uf for the Reynolds

stress scaling parameter. For the Skdre and Krogstad fits, we found that m # n thus
2

seemingly excluding u;. For the non-zero pressure gradient cases, the velocity scaling
involving u,, including the mixed scaling uv(x) = u,u,advocated by Elsberry, er al. [11],
does not satisfy the similarity requirements from above and is therefore also excluded.

The theoretical considerations would therefore favor u’ for the scaling of av.

However, when we plotted and compared av scaled with either ue2 or uf for the Skére

and Krogstad [12] and Elsberry, et. al. [11] datasets, we found there was little difference
between either of these velocity scales in regards to the peak location and the peak value
of the Reynolds shear stress for the two data sets. Although the scaling in some cases
seems to favor one choice or another, the differences are relatively small and we believe
would wash out when one considers the probable error bars on the various velocity
scaling’s. Therefore, based on the limited experimental data, we conclude that the linear
thickness scaling parameter is 6, and that the scaling parameter for av could be
2

eitheruv(x) =u, , uv(x)= uf ,oreven uv(x)=uu,_.

To determine which of these choices might be correct, we looked at the ZPG case.
Since we have already established that u, =u,, the similarity requirement that 7z, and
7,from Eq. 11 be constant means that for the ZPG case, iv = constant. This again

would seem to favor wuv(x)=u_ since u,is necessarily a constant for the ZPG case.

However, for the one high quality ZPG experimental dataset available to the authors, that
being the Direct Numerical Simulation results of Khujadze and Oberlack [13], we found a

clear advantage for uf scaling compared to ue2 The results for the two scalings are shown

13
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Fig. 7a and 7b: Khujadze and Oberlack [13] data plotted with two different y-axis scales.

in Fig. 7a and 7b. Thus, while the similarity requirement that 7, and r,be constant

would seem to favor uv(x)= ue2 , the DNS results point to uv(x) = uf as the proper one

with respect to x (for the DNS data we found u, =0.1733(x+254) "%

150 £ x <£300) for the Reynolds stress scaling. For the ZPG case it is generally true that

for

u, is not a constant. Thus for the wuv(x)= uf choice it would appear that it is not

possible to have iv= constant as required.  The theoretical guidance and the
experimental results seem to be at odds. The resolution to this conflict comes from the
fact that for the data being investigated, the ratio u, /u, is almost constant thus making

2

- work

7y and 7, (almost) constant. This same almost constant ratio also makes uv(x) =u
for the APG cases discussed above since again we have the case that 7, and r,are
(almost) constant. Therefore, even though the experimental evidence is for the most part
ambiguous, we believe the DNS results are correct and that uv(x) = uf is the correct
scaling for the outer region of the turbulent boundary layer.

Finally we looked at the Reynolds stress term i case (see Appendix D). The results
are very similar to the v case. We found the length parameters & 1 A, 0,, and Gy all
worked well as the thickness scaling parameter. Furthermore, the experimental results
62, uu(x) = uf ,or uu(x)=u,u_ . Based
on the Elsberry, et. al. [11] and Skare and Krogstad [12] datasets, we conclude that the

showed only small differences between uu(x) =u
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linear thickness scaling parameter could be either 6,, A, J,, or dyyand that the scaling
2

parameter for jiii could be either uu(x) = u, , uu(x) = uf , Or uu(x) =u,u_.
We again turned to the ZPG case to determine which of these choices might be

correct. Since we have already established that u_=u,, the similarity requirement that

7, and 7,be constant means that for the ZPG case, @i = constant. Looking at the
2

e

Khujadze and Oberlack [13] DNS data, we found the u” or u_u, scaling is better than u

scalings in terms of peak scaling of dii as shown in Fig. 8a, 8b, and 8c. We therefore
conclude that the iz case could scale as either uu(x) = uf or uu(x)=u,u_. Both satisfy
the similarity requirements as long as we have the ratio u, /u_ almost constant. We note

that the mixed scaling case has been advocated by DeGraaff and Eaton [22].

In summary, the new theoretical guidance combined with experimental comparisons
therefore allows us to make the following conjecture: For the outer region of the
turbulent boundary layer, similarity-like behavior can be expected if: 1) the thickness

scales as o, and is a linear function of the distance along the wedge, 2) the velocity
scales as free stream velocity u,and is a power law function of the distance along the

wedge, 3) the Reynolds stress scalings are taken as uv(x):uf and uu(x):uf or

un(x) = u,u, , and 4) the ratio u, /u, is almost constant.
7. Discussion
The purpose of the above theoretical analysis was to determine what theory could tell

us about functional scaling behavior of &, u , and the Reynolds stress terms along the

free stream direction of the wedge for the outer region of the turbulent boundary layer.
This can then be used to provide the experimentalist with theoretical guidance for
discovering, and/or designing experiments to discover similarity in the outer region of the
turbulent boundary layer. Comparing the above theoretical results with previous results
in the literature is informative. As already mentioned in the Introduction, Clauser [1],
Rotta [2], and Townsend [3] made similar momentum balance deliberations. However,
Clauser and Rotta incorporated specific assumptions as to the identity of the scaling
velocity and the Reynolds stress term scalings while Townsend made the assumption that
the Reynolds stress terms are proportional to the velocity scaling variable squared, i.e. he

assumed uv(x) = uu(x) = us2 The more recent work of Castillo and George [4] and

Maciel, Rossignol, and Lemay [6] avoided making any specific assumptions for the
length or velocity scaling variables or the Reynolds stress terms. The above analysis
follows this same tack.

One of the major differences between previous efforts and the new theoretical
construct was the use of the Reynolds stress transport equation in addition to the normally
used x-momentum balance equation. We note that Townsend [3] used the x-momentum
balance equation together with the kinetic energy balance equation but Townsend’s
subsequent conclusions are derivable from the x-momentum balance equation alone. The
inclusion of the Reynolds stress transport equation as used herein with the normally used
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x-momentum balance equation was the key to obtaining the additional criteria y, ¢, and
x (Eq. 10).

Consider the y parameter. The y parameter is obtained from the viscous term of the
Reynolds stress transport equation. The inclusion of the y parameter would mean that
the only allowable solution is for ¢ to be linear in x and u to go as 1/x. This

corresponds to a converging wedge (sink) flow that, as pointed out by Townsend [3], is
also obtained if the o term from Eq. 10 is included. While it is readily accepted that the
viscous term (« term) of the x-momentum equation is negligible for the outer region of
turbulent boundary layer, there is only limited information on the behavior of yin the
outer region. The DNS results of Spalart [23] indicates that the viscous term of Eq. 4 is
indeed negligible compared to the other terms of the Reynolds stress transport equation in
the outer region of the turbulent boundary layer. The viscous term was less than 0.2% of
the normalized sum of the terms of Eq. 4 in the outer region. Thus, for the outer region
of the turbulent boundary layer, both of the viscous terms « and y can be neglected.

Of the next two terms, &£ and «, it is clear that the &£ term is the key term that dictates
the behavior of the length scaling variable. The ¢ term establishes the linear behavior
requirement. At first glance this does not appear to be a new result. A number of groups
have claimed that the boundary layer thickness scaling variable 6 for the turbulent
boundary layer flow must be a linear function of x. Rotta [2] made this assertion based
on similarity arguments using the reduced x-momentum equation. However, Rotta made
an explicit assumption about the x-dependence of the various scaling terms, i.e. he

assumed that u, = u, and that uu(x) = uv(x) = uf . In so far as these assumptions are true
(the present author’s contend u, =u, not u, = u_), then one can see from Eq. 11 that this

would require that the similarity length scale 6 must be a linear function of x. However,
from purely theoretical considerations of the x-momentum equation, there is no
justification for these assumptions for the outer region of a turbulent boundary layer.
Another group, Maciel, Rossignol, and Lemay [6], make a linear behavior assertion based
on the claim that flow equilibrium implies a constant ratio of turbulent and streamwise
time scales. However, they offered no theoretical or experimental verification for their
assertion, which means that their claimed linear dependence is no different than an

assumption. Skére and Krogstad [12] make the linear behavior assertion based on
2

Townsend’s claim. Towsend [3] assumed that wu(x)=wuv(x)=u,. In so far as this

assumption is true (which the present authors believe to be false), then one can see from
Eq. 11 that this would require that the similarity length scale 6 must be a linear function
of x. What differentiates the new results above from these previous efforts is that the
linear behavior was obtained without making a priori assumptions about the x-behavior
of the velocity scaling variable or the Reynolds stress terms.

The other major difference between the above analysis and the earlier work is that
results are obtained for the ZPG case. The key to obtaining the usable criteria for the
length scale o for the ZPG case was to 1) the use of the Reynolds stress transport
equation to obtain the ¢ parameter and 2) carefully pick the scaling group to divide the

scaled momentum equations by. We used the factors (us /5)d{5us } /dx for the x-

momentum equation and u, uv(x) / o for the Reynolds stress transport equation. In this
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way, even if u_is equal to a constant, we do not have a divide-by-zero problem. ~ The
result is that we are able to establish that for similarity-like behavior, the length scale
o must be a linear function of the distance along the wedge for all pressure gradient cases
including the ZPG case.

Applying the theoretical results to existing experimental data was very informative.
We noticed that for the experimental datasets we examined, simultaneous similarity of
the velocity profiles and the Reynolds stress terms are only obtained for the Rotta
criterion where the ratio u, /u, is almost constant. Although we found only three cases
for which simultaneous similarity of the velocity and Reynolds stress exists, we believe
there is indirect supporting evidence for this being a general requirement for similarity-
like behavior of the outer region of the turbulent boundary layer. This support comes
from the fact that of the cases where only velocity profile data was available, we also
only found similarity-like behavior of the velocity profile for the case where the ratio
u,[u,is almost constant. The reason this is important is that, as pointed out by
Townsend [3], it is not possible to have similarity-like behavior in the turbulent boundary
layer unless both the velocity profile and the Reynolds stress terms show simultaneous
similarity behavior. If u, =u, and uu(x)=uv(x) = uf as we propose, then simultaneous
similarity would explain why the ratio u,/u, needs to be almost constant because it is
only under these conditions that the 7, r,, 7;, and 7, of Eq. 11 will be constant.

Having the requirement that the ratio u,/u_be almost constant would explain why
Clauser and others have concluded that the appearance of similarity-like behavior in the
turbulent boundary layer is relatively rare (the contrary view of Castillo and George [4]
will be discussed below). The simple fact is that u,/u, is rarely constant over a
significant distance along a wedge and is a condition for which the experimental
conditions must be carefully manipulated to in order to obtain the almost constant
condition.

Rotta [2] also concluded that u, / u, must be constant for similarity-like behavior of the

turbulent boundary layer. This conclusion rests on Rotta’s assumption that «_ = u_and
2

that uu(x) =uv(x) =u;. While these scalings may work for inner layer similarity, we
can say that experimental evidence we studied clearly shows that u, =u_is not the

correct scaling for the velocity profile for the outer region of the turbulent boundary layer
(see Figs. 2 and 3 for example). Brzek, er. al. [24] and Maciel, Rossignol, and Lemay
[25] have come to the same conclusion. Thus, even though Clauser [1] and Skare and
Krogstad [12], for example, successfully designed their experiments to show flow
equilibrium in the turbulent boundary layer based on keeping u,/u, constant, they

succeed not because the Rotta scaling assumptions are correct but because the scaling’s

advocated herein, u, =u,and uu(x)=uv(x) = uf , are correct and the only time one will

see similarity-like behavior under these conditions is when u, /u, is almost constant.
Having the ratio u, /u, almost constant was critical in resolving the apparent conflict

between the theoretical similarity criteria and the experimental results. This lead us to
make the following conjecture: For the outer region of the turbulent boundary layer,
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similarity-like behavior can be expected if: 1) the thickness scales as o, and is a linear

function of the type s, = a,(x —x,), 2) the velocity scales as the free stream velocity u,
and is a power function of the type u, =a,(x—x,)", 3) the Reynolds stress scales as

uv(x) = uf and wuu(x)= uf or uu(x)=u,u and 4) the ratio u, /uT is almost constant.
Compare this to the Castillo and George [4] results, for example, where they indicated
that the proper outer layer thickness scale is 04, the velocity scale is the Zagarola—Smits

velocity u,, and the Reynolds shear stress scaled as u’> dJ5/dx while the normal stress

component scaled as .

A second important finding concerning the experiment data is that the linear
requirement of the thickness scaling parameter was satisfied by length parameters o, A,

0,, 0rdyy. All worked reasonably well for the eleven experimental datasets we

investigated. In most cases there were no significant observable differences between
plots using the four length scales (see Appendix B). The one exception was the DNS

results of Khujadze and Oberlack [13] for which the parameters 0, and ¢, had a small but

noticeable advantage over A and Jy . This result along with the fact that J has the

smallest error bar, is a well defined integral parameter, and shows up in theoretical
boundary layer equations (momentum integral equation) led us to choose O, over the

other variable candidates. Why o,, A, or 0,have not been tested before as possible

length scale parameters is inexplicable.
One important point that must be made in regards to the experimental results and
conclusions is that we have noticed that in most cases the profiles plotted using o,and u,

as the scaling variables do not possess true similarity behavior in the sense that the curves
collapse directly onto one another. Instead the curves have a symmetry point as denoted
in Fig. 4. This symmetry point has the property that if one looks at the section of curves
to the left of the symmetry point, the curves all line up with the highest Reynolds number
curve having the largest amplitude. To the right of the symmetry point, the order
reverses and the lowest Reynolds number profiles have the largest amplitude. This
behavior seems to show up in many of the datasets that show similarity-like behavior (see
Figs. 4 — 6). We call this behavior similarity-like behavior as opposed to true similarity
behavior. It is apparent that for a given set of similarity-like turbulent boundary layer
velocity profiles, there will be a particular Reynolds number that will produce a velocity
profile that is symmetric about the symmetry point in regards to this behavior. We
speculate that this symmetric profile is the case where true similarity collapse would be
attained if the experimental conditions could be manipulated to produce this specific
value of the ratio u,/u, for a significant distance along the wedge surface. Indeed,

consider the Skare and Krogstad [12] data shown in Fig. 2a that does not show this
symmetry point behavior. What is special about this dataset is that the spread of the
u, [u, values is among the smallest of the eleven datasets we investigated (see Fig. 1).
Clauser [1] and Skare and Krogstad [12] have pointed out that it is very difficult to
generate and maintain a constant u, /u, condition for true similarity behavior. Thus, the
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symmetry point behavior may be the best one can expect for datasets in which the spread
of the u,/u, values is larger than a few percent. Therefore, from an engineering
standpoint, the symmetry point type similarity-like behavior described herein is a more
reasonable design goal then true similarity behavior.

At this point it is appropriate to comment on the contention by Castillo and George [4]
that most turbulent boundary layers are in equilibrium. The claim is based in part on the
apparent success of oo when used with the Zagorola and Smits [21] velocity scale given

by 1,0,/ 0y . Castillo and George and co-workers have attempted to show that many of

the existing, as well as their own, experimental datasets have similarity-like behavior
when plotted with this length and velocity scale. We have found that in some cases the
supposed success is being realized because of a flaw in the way the plots are being
presented. Consider a couple of specific cases as examples. In Castillo and George [4],
the authors claim that the oy, and the velocity scale u,; =u,0, /0y results in similarity
collapse of the profile data for Clauser’s [1] mild APG case. We reproduce their Fig. 8a
here as our Fig.9a. In Fig.9b we plot the same exact data using the y-axis scale
ul uyginstead of (u, —u)/u,s. Contrary to Castillo and George’s claim, the Clauser data

scaled with Oy and u,0, / 54y does not result in similarity-like behavior. Compare this to

a subset of Clauser’s data plotted in Fig. 5 using 6,and u, which does show similarity-

like behavior. Consider another example given by Castillo and Walker [26] in which
they claim the 045 and the velocity scale u,; =u,0, / 545 results in similarity collapse of

4 1 1 1 " 1
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Fig. 9a and 9b: Clauser’s mild APG data plotted with two different y-axis scales.
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the data for some of Osterlund’s [16] ZPG datasets. We reproduce their Fig. 3 here as
Fig. 10a. In Fig. 10b we plot the same exact data using the y-axis scale u/u,ginstead of

(u, —u)/uzg . One would obviously come to a very different opinion as to the correctness
of the similarity scaling depending on which figure one was presented. In Fig. 10c, we
plot the same data using o,and u,. The fact that these same datasets (actually subsets of

the datasets) show similarity-like behavior when plotted using J,and u, scaling makes it

difficult to directly rule out Castillo and George’s [4] contention that most turbulent
boundary layers are in equilibrium. However, what we can say is that it will require a
careful reexamination of all of their data before they can make this contention.
Furthermore, based on our own tests of the eleven datasets considered herein, we can say
that the Zagarola and Smits [21] velocity scale pared with 0y as the length scale was

noticeably inferior to J§,and u, for producing similarity-like behavior (see Figs. 2, 3, and

10 for example).
We should also comment on the DeGraaff and Eaton [22] mixed scaling for the

scaling for jii. DeGraaff and Eaton [22] and Metzger, et. al. [27] contend that
2

uu(x) =u,u_ collapses the data from a number of ZPG cases better than u,. However,

for the datasets we investigated, we found the differences to be small. If one considers
the uncertainty of measuring u_ compared to u,, which is typically much higher, then the

argument for uu(x)=u,u_over uu(x)= uf is tenuous. The DNS data of Khujadze and

2

Oberlack [13] also indicates that the scaling could be either wuu(x) =u,u, or uu(x)=u,
(see Figs. 8a and 8c). Either selection will satisfy the theoretical requirements above for

experiments in which similarity-like behavior is obtained when the ratio u, /u, is almost

constant. At this point in time, we do not believe the experimental evidence is sufficient
to distinguish between the two choices.

8. Conclusion

The transformed x-momentum and Reynolds stress transport equations are used to
obtain similarity criteria for both the velocity profile and the Reynolds stress terms. For
similarity in the outer turbulent boundary layer region it was shown that the boundary
layer thickness must be a linear function of the distance along the wedge and free stream
velocity must be a power function of the distance along the wedge. Results were
obtained for all pressure gradient variants including the flat plate case. Comparison of
experimental data plots was used to conclude that the thickness scales as the
displacement thickness, the velocity scales as the free stream velocity, and the Reynolds
stresses scale as the square of the friction velocity. Furthermore, similarity-like behavior
in the outer region of the turbulent boundary layer is only obtained when the ratio of the
free stream velocity to the friction velocity is almost constant.
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Tables

Table 1: Summary of Datasets

Author Stations showing Source of dataset
velocity profile similarity

Clauser [1] x=18.58, 23.83, 26.92, 29.75, and 32.25 Coles and Hirst {20]
Ident 2200

Bradshaw and x=1917,3917,5.417, and 6917 Coles and Hirst {20]

Ferris [18] Ident 2600

Skare and x=4.0,4.2,4.4,4.6,4.85.0, and 5.2 Author

Krogstad [12]

Elsberry, et. Case A, (x—xg)/ 6y =239, 264, 295, Author

al.[11] 325, and 362

Samuel and x=0.855,1.16, 1.44,1.76, 2.1, 2.26, and Journals of Fluids

Joubert [19] 24 Engineering Databank
Web site, DB96-
243/D1/f0141

Ludwieg and x=1.782,2.282, 2.782, 3.132, 3.332, Coles and Hirst {20]

Tillmann [17] 3.532,3.732,3.932,4.132, and 4.332 Ident 1300

Herring and x=2,3,4,and 5 Coles and Hirst {20]

Norbury [10] Ident 2700

Wieghardt and x=1.087, 1.237, 1.437, 1.637, 1.987, Coles and Hirst {20]

Tillmann [14] 2.287,2.587,2.887,3.187, 3.487, 3.787, Ident 1400

4.087, 4.387,4.687, and 4.987

Smith [15]

x=1.021, 1.161, 1.302, 1.451, 1.721,
2.021, and 2.523

Princeton University Gas
Dynamics Lab Web site

Osterlund [16]

x=1.525,3.5,4.5and 5.5 (u, =10.3 m/s)
consisting of SWI981129A, SW981128A,
SWOI81127H, SW981126C, and
SWOB1112A

Author

Khujadze and
Oberlack [13]

Rey = 2088, 2333, 2569, and 2807.

Author
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Appendix A: Data Fits

The following plots are support data for the Technical Report entitled “Similarity Scaling of
the Outer Region of the Turbulent Boundary Layer”, by David W. Weyburne. In the Report it
was determined that the functional form the thickness scaling constant ¢ may take is a function

of the type & =a,(x—Xx,) and that the velocity similarity scaling constant u_ is a power law

function of the type u, = a,(x—x,)™, such that a,, a,, m, and x, are constants. The following
plots are compiled to show the data fits for the data sets considered for the paper. We found that
in almost all cases, the J,, A, J,, and J,, are all linear functions of the type a(x— xo), with

the exception of Herring and Norbury [10] for which J,, A, J,, and J,, are constant. Fits were
performed to u, = a,(x—x,)" using the same x,from the thickness fitting. For the four ZPG
cases, it was found that u_ could be fitted by u_=a,(x—x,)" using the same x, from the

thickness fitting. It should be mentioned that in most cases the value of x,changed when fitting

0y, A, 8, or Jy for the same dataset. However, it was found that the subsequent fits to

u, = a,(x—x,)" could still be effected. Thus there does not seem to a single set of constants a,,
a,, Xy, and m that satisfy a given dataset for similarity. The plots are provided for visual

verification of the claims made in the main body of the Report. They are not identified with
Figure numbers but rather as the ensemble of plots as Appendix A.
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Khujadze and Oberlack [13] fits for Re, = 1850, 2088, 2333, 2569, and 2807. Each

experimental line (black line) represents over 1800 data points.
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Smith [15] data fits for seven data sets consisting of Re, =4601,
4980, 5388, 5888, 6866, 7696, and 9148.
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Skare and Krogstad [12] data fits for seven data sets consisting of
data at x=4.0, 4.2, 4.4,4.6,4.8,5.0,and 5.2 m.
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Samuel and Joubert [19] fits to seven profiles taken at x=0.855, 1.16, 1.44, 1.76, 2.1, 2.26,
and 2.4 m. The five other data sets that do not fit to the fitting lines do not show similarity.
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Ludwieg and Tillmann [17] fits to twelve profiles taken at Re,= 1602, 2008,

2480. 2806.2914. 3119. 3203. 3666. 3888 and 4062.
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Clauser [1] fits to eight profiles designated Set 1 by Clauser.
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Bradshaw and Ferriss [18] data set; fits to four profiles
designated Ident 2600.
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designated Ident 2700.
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Appendix B: Velocity Profile Scale Comparisons

The following plots are support data for the Technical Report entitled “Similarity Scaling of
the Outer Region of the Turbulent Boundary Layer”, by David W. Weyburne. The plots are

compiled to show the velocity profiles plotted using the length scales o,, A, §,, and 0, for the

datasets considered for the paper. The velocity scaling variables tested are u,, u_, and u,

T°
where u,¢ is the Zagarola and Smits velocity. Also note that u* = u(y)/ u,. The plots are

provided for visual verification of the claims made in the main body of the Report. They are not
identified with Figure numbers but rather as the ensemble of plots as Appendix B.
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Khujadze and Oberlack [13] five Velocity Profiles for re, = 1850, 2088,
2333, 2569, and 2807.
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Khujadze and Oberlack [13] five Velocity Profiles for Re, = 1850, 2088,
2333, 2569, and 2807.
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Wieghardt & Tillmann [14] data profiles for Re, = 4387, 4858, 5473, 6229,
7170, 8172, 8897, 9815, 10611, 11472, 12223,13043, 14024, 14703, and 15518.
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Wieghardt & Tillmann [14] data profiles for Rey = 4387, 4858, 5473, 6229,
7170, 8172, 8897, 9815, 10611, 11472, 12223,13043, 14024, 14703, and 15518.
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Osterlund [16] velocity profiles for «, = 10.3 m/s consisting of SW981129A,
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Osterlund [16] velocity profiles for «, = 10.3 m/s consisting of SW981129A,
SWO81128A, SWI981127H, SW981126C, and SW981112A data sets.
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Smith [15] data fits for seven data sets consisting of Re,=4601,
4980, 5388, 5888, 6866, 7696, and 9148.
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Smith [15] data fits for seven data sets consisting of Re,=4601,
4980, 5388, 5888, 6866, 7696, and 9148.
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Skare and Krogstad [12] seven Velocity Profile Plots

taken at x=4.0,4.2,4.4,4.6, 5.0, and 5.2 m.
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Skare and Krogstad [12] seven Velocity Profile Plots
taken at x=4.0,4.2, 4.4,4.6, 5.0, and 5.2 m.
0.5 L
ulu,
0.0 , :
0 10
v,

59



u/ue u/ue

Elsberry, Loeffler, Zhou, & Wygnanski [11] five Velocity Profile Plots

designated as Case A =239, 264, 295, 325, and 362 by Elsberry, et. al.
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Elsberry, Loeffler, Zhou, & Wygnanski [11] five Velocity Profile Plots

designated as Case A =239, 264, 295, 325, and 362 by Elsberry, et. al.
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Ludwieg and Tillmann [17] twelve FPG profiles taken at x=0.782,
1.282,1.782,2.282, 2.782, 3.132, 3.332, 3.532, 3.732, 3.932, 4.132,
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Ludwieg and Tillmann [17] twelve FPG profiles taken at x=0.782,
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Samuel and Joubert [19] fits to seven profiles taken at x=(0.855, 1.16, 1.44, 1.76,
2.1,2.26, and 2.4 m. Not shown are five other data sets not showing similarity.
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Samuel and Joubert [19] fits to seven profiles taken at x=0.855, 1.16, 1.44, 1.76,
2.1,2.26, and 2.4 m. Not shown are five other data sets not showing similarity.
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Clauser [1] five velocity profiles with Re,= 11453, 14007,
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Clauser [1] five velocity profiles with Re,= 11453, 14007,
15515, 16182, and 17405.
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Bradshaw and Ferriss [18] four velocity profiles with x=1.917,
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Bradshaw and Ferriss [18] four velocity profiles with x=1.917,
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Herring and Norbury [10] data set; last four profiles of six
designated Ident 2700.
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Herring and Norbury [10] data set; last four profiles of six
designated Ident 2700.
0.54 L
ulu,,
0.0

71




Appendix C: Scale Comparisons for v

The following plots are support data for the Technical Report entitled “Similarity Scaling of
the Outer Region of the Turbulent Boundary Layer”, by David W. Weyburne. The plots are
compiled to show the uv profiles plotted using the different length and velocity scales for the
data sets considered for the report. The plots are provided for visual verification of the claims
made in the main body of the Report. They are not identified with Figure numbers but rather as
the ensemble of plots as Appendix C.
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Elsberry, Loeffler, Zhou, & Wygnanski [11] five Reynolds Stress Profiles <uv>
plots designated as Case A = 239, 264, 295, 325, and 362 by Elsberry, et. al. [11].
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Elsberry, Loeffler, Zhou, & Wygnanski, (2000) five Reynolds Stress Profiles <uv>
plots designated as Case A = 239, 264, 295, 325, and 362 by Elsberry, et. al. [11].
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Khujadze and Oberlack [13] four Reynolds Stress Profiles <uv> for Re, = 2088,

2333, 2569, and 2807. Note for this case u, =u .
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Skare and Krogstad [12] six Reynolds Stress Profiles <uv> plots
taken at x=4.0,4.2,4.4,4.6,5.0, and 5.2 m.
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Skare and Krogstad [12] six Reynolds Stress Profiles <uv> plots
taken at x=4.0,4.2,4.4, 4.6,5.0, and 5.2 m.
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Appendix D: Scale Comparisons for iiii

The following plots are support data for the Technical Report entitled “Similarity Scaling of
the Outer Region of the Turbulent Boundary Layer”, by David W. Weyburne. The plots are
compiled to show the uii profiles plotted using the different length and velocity scales for the
data sets considered for the report. We include the DeGrraff and Eaton results even though this
data is not taken at different x-locations. The plots are provided for visual verification of the
claims made in the main body of the Report. They are not identified with Figure numbers but
rather as the ensemble of plots as Appendix D.
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Elsberry, Loeffler, Zhou, & Wygnanski [11] five Reynolds Stress Profiles <uu>
plots designated as Case A =239, 264, 295, 325, and 362 by Elsberry, et. al. [11].
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Elsberry, Loeffler, Zhou, & Wygnanski [11] five Reynolds Stress Profiles <uv>
plots designated as Case A =239, 264, 295, 325, and 362 by Elsberry, et. al. [11].
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Khujadze and Oberlack [13] five Stress Profiles <uu> for Rey= 1850, 2088, 2333, 2569,
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Skare and Krogstad [12] six Stress Profiles plots <uu> taken at x=4.0, 4.2, 4.4, 4.6,
5.0, and 5.2 m.
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Skare and Krogstad [12] six Stress Profiles plots <uu> taken at x=4.0, 4.2, 4.4, 4.6,
5.0, and 5.2 m.
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DeGraaff and Eaton [22] three Stress Profiles plots <uu> taken at Re;=1430,
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DeGraaff and Eaton [22] three Stress Profiles plots <uu> taken at Re,=1430,
2900, and 5200.
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